14 research outputs found

    Mutations Altering the Interplay between GkDnaC Helicase and DNA Reveal an Insight into Helicase Unwinding

    Get PDF
    Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2–4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction

    Xanthine Oxidase Activity in Human Intestines. Histochemical and Radiochemical Study

    No full text

    Classical and next generation sequencing approaches unravel <em>Bymovirus</em> diversity in barley crops in France.

    No full text
    Despite the generalized use of cultivars carrying the rym4 resistance gene, the impact of viral mosaic diseases on winter barleys increased in recent years in France. This change could reflect i) an increased prevalence of the rym4 resistance-breaking pathotype of Barley yellow mosaic virus Y (BaYMV-2), ii) the emergence of rym4 resistance-breaking pathotypes of Barley mild mosaic virus (BaMMV) or iii) the emergence of other viruses. A study was undertaken to determine the distribution and diversity of viruses causing yellow mosaic disease. A collection of 241 symptomatic leaf samples from susceptible, rym4 and rym5 varieties was gathered from 117 sites. The viruses present in all samples were identified by specific RT-PCR assays and, for selected samples, by double-stranded RNA next-generation sequencing (NGS). The results show that BaYMV-2 is responsible for the symptoms observed in varieties carrying the resistance gene rym4. In susceptible varieties, both BaYMV-1 and BaYMV-2 were detected, together with BaMMV. Phylogenetic analyses indicate that the rym4 resistance-breaking ability independently evolved in multiple genetic backgrounds. Parallel analyses revealed a similar scenario of multiple independent emergence events in BaMMV for rym5 resistance-breaking, likely involving multiple amino acid positions in the viral-linked genome protein. NGS analyses and classical techniques provided highly convergent results, highlighting and validating the power of NGS approaches for diagnostics and viral population characterization
    corecore